SpectraCell Blog

SpectraCell Laboratories, Inc.

Recent Posts

Leptin Resistance: Everything You Need to Know

Posted by SpectraCell Laboratories, Inc. on Wed, Aug 09, 2017 @ 02:26 PM

Overeating.jpgLeptin, often called the “satiety hormone,” is an adipokine (signaling molecule produced by fat cells) whose main function is to regulate energy and fat stores. In a metabolically healthy person, a temporary increase in caloric intake (such as after a big meal) corresponds to an increase in leptin production. This prompts the hypothalamus to send signals that promote satiety, which cues one to stop eating.

Leptin was the first adipokine to be discovered (in 1994) and changed how scientists view fat tissue. Fat stores were previously thought to be inert tissue that did not cause any direct harm. Upon the discovery of leptin and its related genes, scientists learned that excess adipose tissue is actually metabolically active, releasing several hormones (adipokines) and inflammatory enzymes. Consequently, it is now considered an endocrine organ.

Although leptin suppresses appetite, one can become leptin resistant, feeling hungry even when one consuming enough calories to maintain metabolic requirements. In a way that is analogous to insulin resistance, leptin resistance occurs in obesity: the higher the fat stores, the more leptin produced. In fact, leptin varies exponentially (as opposed to linearly) with adipose tissue. This means that changes in fat mass profoundly affect leptin levels. Over time, as leptin increasingly circulates in blood, the brain eventually becomes resistant to its effects. As a result, one becomes inclined to overeat, unable to experience satiety and therefore feeling hungry even when leptin levels are high! This is referred to as leptin resistance. 

An increase in leptin (in the short term) follows an increase in caloric intake. This promotes satiety and signals one to stop eating. However, in the long term, a chronic increase in leptin can be attributed to excess body fat, estrogen (endogenous and exogenous), insulin (leptin is released dose-dependently in response to insulin), stress, and some steroid medications such as dexamethasone.

Loss of fat tissue, reduction in caloric intake via dieting and fasting, testosterone (which is anabolic – this increases appetite), and ghrelin (the hunger hormone) are all factors that lower leptin. Sleep deprivation, which upregulates appetite, is a reason why sleep loss is linked to cravings, and also impacts levels.

Factors that impact leptin sensitivity include:

  • Excess body weight
  • High Fructose Corn Syrup (this blocks leptin receptors)
  • High Triglyceride levels block leptin’s ability to reach the hypothalamus
  • Estrogen deficiency: the leptin-estrogen link may cause menstrual cravings
  • Lectins in grains bind to leptin receptors, inducing leptin resistance 

Leptin receptors are found in several tissues besides the hypothalamus, including endothelial, muscle, placental, and liver cells. Although its appetite-regulating effects are well established, it is known to play a role in fertility and puberty; however, its other functions are not fully understood.

SpectraCell’s CardioMetabolic test offers a clinically relevant evaluation to help define risk for atherosclerotic cardiovascular disease (ASCVD), progression toward Type 2 Diabetes, and inflammation.
Whether you are at high risk of heart disease or managing an existing metabolic condition, SpectraCell’s CardioMetabolic test is appropriate and recommended.

 GET TESTED

Topics: cardiometabolic, Weight Management, Leptin, Leptin Resistance

Vitamin A: Functions and Benefits

Posted by SpectraCell Laboratories, Inc. on Mon, Jul 31, 2017 @ 11:30 AM

vit A.jpgVitamin A was one of the earliest vitamins to be discovered – hence its top rank in the alphabetical vitamin nomenclature.Vitamin A is a family of fat soluble compounds that play an important role in vision, bone growth, reproduction, and immune system regulation. Most people associate vitamin A with carrots, and for good reason: the common orange veggie has high amounts of beta-carotene, which is actually a vitamin A precursor and also the reason carrots got their name. But vitamin A is actually a group of chemicals that are similar in structure, and include retinol (the most biologically active form of vitamin A), retinal, and retinoic acid.

β-carotene is slightly different in that it is cleaved in the intestinal mucosa by an enzyme to form retinol. Other carotenoids include lycopene and lutein but, although similar to vitamin A, they are not actually vitamin A in the truest sense. One distinction is that excessive amounts of vitamin A from over-supplementation, can cause toxicity (although deficiency is much more common). On the other hand, β-carotene does not cause vitamin A toxicity because there exists a regulatory mechanism that limits vitamin A production from beta carotene when high levels are ingested.

A large number of physiological systems may be affected by vitamin A deficiency which is most often associated with strict dietary restrictions and excess alcohol intake. Patients with Celiac disease, Crohn’s disease and pancreatic disorders are particularly susceptible due to malabsorption.  Vitamin A is also essential for the developing skeletal system and deficiency can result in growth retardation or abnormal bone formation. 

The functions of vitamin A are very diverse:

  • Eyesight: Vitamin A forms retinal, which combines with a protein (rhodopsin) to create the light-absorbing cells in the eye. This explains why a common clinical manifestation of deficiency is night blindness and poor vision.
  • Skin: In addition to promoting healthy skin function and integrity, vitamin A regulates the growth of epithelial surfaces in the eyes and respiratory, intestinal, and urinary tracts. Deficiency impairs epithelial regeneration, which can manifest as skin hyperkeratization, infertility, or increased susceptibility to respiratory infections.
  • Anemia: Vitamin A helps transfer iron to red blood cells for incorporation into hemoglobin; thus, a vitamin A deficiency will exacerbate an iron deficiency.
  • Weight management: Vitamin A reduces the size of fat cells, regulates the genetic expression of leptin (a hormone that suppresses appetite), and enhances the expression of genes that reduce a person’s tendency to store food as fat.
  • Cancer prevention: Vitamin A deficiency impairs the body’s ability to launch cell-mediated immune responses to cancer cells. Vitamin A inhibits squamous metaplasia (a type of skin cancer) and inhibits breast cancer cell growth.
  • Fertility: Vitamin A plays a key role in the synthesis of sperm.
  • Autism: Vitamin A is part of the retinoid receptor protein (G-alpha protein), which is critical for language processing, attention, and sensory perception. Some autistics have a defect in this protein that vitamin A supplementation can modulate.
  • Sleep: Vitamin A deficiency alters brains waves in non-REM sleep, causing sleep to be less restorative.

Vitamin A also interacts with other micronutrients. For example, zinc is required to transport vitamin A into tissues, so a zinc deficiency will limit retinal binding protein (RBP) synthesis and thus limits the body’s ability to use vitamin A stores in the liver. Oleic acid, a fatty acid found in olive oil, facilitates the absorption of vitamin A in the gut.

Find out if you have a vitamin A deficiency, and take steps to correct it, by ordering a micronutrient test today. 

GET TESTED

Topics: micronutrients, Vitamin A, Vitamins, Fertility, Cancer Prevention, Celiac Disease, Supernutrients, Weight Management, Vitamin A Deficiency, Chron's Disease, Anemia, Nutrients, β-carotene

Serum vs. Intracellular Micronutrient Status

Posted by SpectraCell Laboratories, Inc. on Mon, Jul 24, 2017 @ 01:49 PM

Knowing one’s vitamin status can be incredibly empowering when it comes to health. In truth, “vitamin status” is somewhat of a loaded phrase because vitamins, like other micronutrients, exist both outside the cell (extracellular) and inside the cell (intracellular). Vitamin status outside a cell may be considered “within range” or “adequate” by conventional terms (e.g. when measured by standard lab testing), while vitamin status inside the cell – where metabolism actually occurs - may be depleted. Since vitamins function inside cells, extracellular measurements (such as serum testing) can be potentially misleading. Intracellular micronutrient levels, as opposed to what is present outside of cells (where it is not physiologically useful), is more clinically significant.

It is clear that serum micronutrient testing can yield important information. One obvious example is serum vitamin B12; when a person’s level is low, this can manifest as fatigue or anemia. Often, however, serum B12 may appear to be “normal,” but clinical symptoms of fatigue or B12 deficiency still exist. Why? Because serum B12 is a reflection of extracellular B12, whereas the intracellular reserve of B12 is what’s important; it matters little how much of a nutrient is present in one’s blood – if it is not getting into the cell, it won’t improve cellular or overall health. Consider this analogy: imagine being totally dehydrated, overwhelmed with thirst. If you jumped into a pool but could not drink the water, you remain thirsty because the water doesn’t make it into your body. Cells will be similarly starved if B12 doesn’t get assimilated.

So why has intracellular testing not replaced the serum variety? One simple reason is that serum testing has been used for so long that reference ranges are well established and understood, albeit potentially misleading. Another reason is that intracellular testing is more technologically advanced and fewer labs offer it. Finally, serum testing has been useful for detecting serious nutrient deficiencies that have progressed into obvious symptoms. But it is worth noting that intracellular testing helps detect deficiencies long before overt (and sometimes debilitating) symptoms occur –serum levels often fall in the “normal” range when a true intracellular deficiency exists. 

SpectraCell’s micronutrient test is a true intracellular test – NOT a serum measurement. 

For additional information and medical publications supporting intracellular testing over serum tests, click
here.

Find out your intracellular micronutrient status today!

GET TESTED 

Topics: micronutrients, micronutrient testing, Vitamins, micronutrient status, serum vs. intracellular, serum B12

Vital to Victory: Micronutrient Requirements for Athletes

Posted by SpectraCell Laboratories, Inc. on Wed, Jun 21, 2017 @ 01:25 PM

From a nutritional standpoint, the athlete’s focus should include both macronutrients – protein for muscle rebuilding, carbohydrates for energy renewal, fats for nerve function – as well as the critically important micronutrients – which are the vitamins, minerals, antioxidants and amino acids your body needs to function optimally every day and over a lifetime.

Hear Dr. Grabowski’s take on the role of micronutrients in sports nutrition.

Above all, we are all biochemically unique, and several factors affect our personal micronutrient needs - age, lifestyle, intensity of physical training, prescription drug usage, past and present illness or injuries, absorption rate, genetics and more. The “normal” amount of each micronutrient varies from athlete to athlete, and even in the same athlete depending on circumstances in his or her life.

SpectraCell’s Micronutrient test measures 33 vitamins and minerals in your body, but goes even further – it measures functional, long-term levels within the cell, which means SpectraCell’s micronutrient test not only identifies deficiencies but is also a valuable tool in predicting health concerns before overt symptoms occur. How's that for a test?! 
 
That said, YOU ARE WHAT YOU ABSORB - not just what you eat. Find out whether your supplements are really working and how you can improve your absorption and performance today. To learn more about the role of micronutrients in sports nutrition, click here
GET TESTED


 

Topics: micronutrients, Muscle recovery, Sports Performance, Nutrition and Sports Performance, Endurance Athletes, Crossfit, Athletic Performance, Sports Nutrition, XFIT, Sports Medicine

Serum vs. Intracellular Micronutrient Status

Posted by SpectraCell Laboratories, Inc. on Thu, Jun 08, 2017 @ 02:58 PM

cells2-1.jpgKnowing one’s vitamin status can be incredibly empowering when it comes to health. In truth, “vitamin status” is somewhat of a loaded phrase because vitamins, like other micronutrients, exist both outside the cell (extracellular) and inside the cell (intracellular). Vitamin status outside a cell may be considered “within range” or “adequate” by conventional terms (e.g. when measured by standard lab testing), while vitamin status inside the cell – where metabolism actually occurs - may be depleted. Since vitamins function inside cells, extracellular measurements (such as serum testing) can be potentially misleading. Intracellular micronutrient levels, as opposed to what is present outside of cells (where it is not physiologically useful), is more clinically significant.

It is clear that serum micronutrient testing can yield important information. One obvious example is serum vitamin B12; when a person’s level is low, this can manifest as fatigue or anemia. Often, however, serum B12 may appear to be “normal,” but clinical symptoms of fatigue or B12 deficiency still exist. Why? Because serum B12 is a reflection of extracellular B12, whereas the intracellular reserve of B12 is what’s important; it matters little how much of a nutrient is present in one’s blood – if it is not getting into the cell, it won’t improve cellular or overall health. Consider this analogy: imagine being totally dehydrated, overwhelmed with thirst. If you jumped into a pool but could not drink the water, you remain thirsty because the water doesn’t make it into your body. Cells will be similarly starved if B12 doesn’t get assimilated.

So why has intracellular testing not replaced the serum variety? One simple reason is that serum testing has been used for so long that reference ranges are well established and understood, albeit potentially misleading. Another reason is that intracellular testing is more technologically advanced and fewer labs offer it. Finally, serum testing has been useful for detecting serious nutrient deficiencies that have progressed into obvious symptoms. But it is worth noting that intracellular testing helps detect deficiencies long before overt (and sometimes debilitating) symptoms occur –serum levels often fall in the “normal” range when a true intracellular deficiency exists.

SpectraCell’s micronutrient test is a true intracellular test – NOT a serum measurement. Find out your intracellular micronutrient status today!

For additional information and medical publications supporting intracellular testing over serum tests, click HERE.


 

Topics: micronutrients, micronutrient testing, Intracellular Analysis, micronutrient status, Serum Testing, Vitamin Status, extracellular vs. intracellular, integrative medicine, precision medicine

Vitamin D Linked to Longer Telomeres, Suggests Study

Posted by SpectraCell Laboratories, Inc. on Wed, May 31, 2017 @ 01:59 PM


Telomere.pngTelomeres – the protective DNA caps on every chromosome which shorten over time as a cell ages – have been correlated with chronic diseases in hundreds of studies.  A shorter telomere equates to an aging cell, and the cumulative effect of this may manifest as the degenerative diseases commonly associated with aging, including heart disease, cancer and dementia.  Low vitamin D has also been linked to several chronic diseases.  In this study, researchers sought to link the two – low vitamin D and shorter telomeres.  Telomere length was measured via PCR (polymerase chain reaction) on 4260 American adults ranging in age from 20 years old to over 60.  In the age group of 40-59 years, blood levels of vitamin D were correlated to telomere length.  In other words, higher vitamin D = longer telomeres. 

In a different study on participants from the same government-sponsored  survey (NHANES, National Health and Nutrition Examination Survey), 4347 American adults were evaluated for vitamin D levels and telomere length.  After adjusting for common demographic factors (age, race, education), higher vitamin D was linked to longer telomeres.  However, after adjusting for common physical factors (smoking, BMI, activity levels), no correlation was seen.  This suggests that vitamin D may very well be correlated with telomere length, but other factors play such a big role in healthy aging (such as not smoking or getting regular exercise) that these factors make the vitamin D-telomere connection less clear.

Serum 25-Hydroxyvitamin D Has a Modest Positive Association with Leukocyte Telomere Length in Middle-Aged US Adults. Link to ABSTRACT.

The association of telomere length and serum 25-hydroxyvitamin D levels in US adults: the National Health and Nutrition Examination Survey. Link to ABSTRACT. Link to FREE FULL TEXT. 



 

Topics: Vitamin D, telomere length, DNA, Anti-Aging, Longer Telomeres, Degenerative Diseases, Age Management

The Role of Micronutrient Deficiencies in Attention Deficit Hyperactivity Disorder

Posted by SpectraCell Laboratories, Inc. on Fri, May 05, 2017 @ 11:27 AM

ADHD.jpgAttention Deficit Hyperactivity Disorder (ADHD) has become an increasingly prevalent condition, afflicting children, adolescents, and adults. Some hallmarks of this brain disorder include an inability to focus and/ or a failure to see projects/ activities to completion. Unbeknownst to most, ADHD can be exacerbated by micronutrient deficiencies. Evidence of the relationship between micronutrient status and ADHD-associated behaviors is compelling; the list below represents some examples of the micronutrient status-ADHD connection: 

Vitamin B6: Evidence suggests that high-dose supplementation of B6 is as effective as Ritalin for ADHD, probably due to its role in raising serotonin levels.

Folate (AKA Vitamin B9): Low maternal folate status during pregnancy has been linked to hyperactivity in children. Persons with the MTHFR (methyl tetrahydrafolate reductase) polymorphism are predisposed to folate deficiency, and are more likely to have ADHD.

Magnesium: A deficiency in this micronutrient is linked to poor functioning of the neurotransmitters that control emotion, social reactions, hyperactivity, and attention. Magnesium has a synergistic effect with vitamin B6.

Zinc: This nutrient is a cofactor required for the synthesis of dopamine, which impacts mood and concentration. Low zinc depresses both melatonin and serotonin production; this affects behavior and one’s ability to process information.

Carnitine: Reduces hyperactivity and improves social behavior in people with ADHD via its role in fatty acid metabolism. Some consider carnitine a safe alternative to stimulant drugs.

Serine: Administration of phosphatidylserine in conjunction with omega-3 fatty acids improved ADHD symptoms (attention scores) significantly more than omega-3 fatty acids alone, suggesting a synergistic effect. Phosphatidylserine increases dopamine levels.

Glutamine: A precursor to GABA (gamma-aminobutyric acid), the calming neurotransmitter that affects mood, focus, and hyperactivity. Disruption of glutamine-containing neurotransmission systems may cause ADHD. 

Choline: A precursor to acetylcholine, the neurotransmitter that regulates memory, focus, and muscle control (hyperactivity). 

Antioxidant status: Oxidative imbalance is prevalent in ADHD patients and likely plays a causative role. Glutathione, a very potent antioxidant, is commonly deficient in ADHD.

To evaluate your micronutrient status, order your micronutrient test today!

For a copy of SpectraCell's nutrient correlation wheel on ADHD, click here.

 

Topics: micronutrients, Nutrition, ADHD, micronutrient deficiencies in ADHD, mental health in children, micronutrient status

The Role of Omega-3s in ADHD & Autism

Posted by SpectraCell Laboratories, Inc. on Fri, Apr 28, 2017 @ 02:24 PM

ADHD-Autism.jpgResearchers first linked ADHD to essential fatty acid deficiency in the early 1980s, and recent years have seen an unprecedented rise in autism and attention deficit hyperactivity disorder (ADHD).  Since our nerves and brain are composed primarily of fats, poor omega-3 fatty acid status can alter neurotransmitter function and inhibit brain performance on many levels.  This deficiency has a greater impact on males because their requirements for essential fatty acids are, in general, much higher (and one reason why autism occurs more frequently in boys).

Brain and nerve growth throughout childhood is extraordinarily rapid, and the need for omega-3 fatty acids remains critical all the way through adolescence and into adulthood. The brain can actually create nerve pathways in response to new experiences and learning environments. Called “neuronal plasticity,” this phenomenon is crucial for long-term memory and learning.  Adequate levels of the omega-3 fatty acid, DHA (docosahexaenoic acid), are needed for this to occur.

The ratio of omega-6 to omega-3 fatty acids (both types differ in structure and function) also affects neuronal plasticity. Scientists now agree that this ratio is just as important as the actual levels of each, especially in autism and ADHD. A lower ratio is better and when this ratio is improved, symptoms of autism and ADHD often improve.

Stimulant drugs such as Ritalin are commonly prescribed for ADHD, but studies show that supplements can be equally effective in treating symptoms of ADHD. An Oxford University study demonstrated that fatty acid supplementation for three months to children struggling with ADHD resulted in improvements in reading, spelling and behavior; these results were not observed in the placebo group. Following administration of the same supplements to the placebo group in the study as a second part of this trial, the same improvements were eventually observed.

Discover whether your child has an essential fatty acid deficiency and learn how our solutions can aid in treating symptoms of ADHD and Autism. 

GET TESTED


 

Topics: autism, DHA, ADHD, autism speaks, Omega-3s in ADHD and Autism, Essential Fatty Acid Deficiency

Nutrition Speaks: The Role of Micronutrient Deficiencies in Autism

Posted by SpectraCell Laboratories, Inc. on Tue, Apr 25, 2017 @ 12:06 PM

autism.jpgWhen people think of autism and nutrition, the first thing that comes to mind is often food sensitivities, especially given the widespread attention to the impact of certain additives and common triggers (such as wheat or dairy) on that condition. But it is worth considering that micronutrient levels can have a profound impact on autistic symptoms. The list below includes specific micronutrients suggested to have a role in the development and treatment of autism:

Vitamin D: High-dose vitamin D therapy reversed autistic behaviors in severely deficient children; maternal vitamin D deficiency may predispose children to autism.

Vitamin A: One cause of autism may be a defect in a retinoid receptor protein (G-alpha protein) that is critical for language processing, attention, and sensory perception. Evidence suggests that natural vitamin A fixes this protein defect in autistics.

Folate: Oral folate therapy can resolve symptoms of autism in some cases, particularly in autistics with genes that impair folate-dependent enzymes.

Glutamine: Blood levels of this amino acid - which acts as a neurotransmitter - are particularly low in autistics. Glutamine also helps prevent leaky gut syndrome, which can exacerbate autistic symptoms.

Vitamin C: Improves symptom severity and sensory motor scores in autistic patients possibly due to interaction with dopamine synthesis; it also has a strong sparing effect on glutathione.

Glutathione & Cysteine: Both are commonly deficient in autistic patients. Low antioxidant status impairs detoxification and methylation processes, and has been linked to neurological symptoms in autism, which is often considered an oxidative stress disorder.

Vitamin B1: Deficiency linked to delayed language development; supplementation may benefit autistic patients.

Vitamin B12: Low B12 impairs methylation (detoxification), which can cause the neurological damage responsible for many autistic symptoms. B12 deficiency can cause optic neuropathy and vision loss in autistics; B12 raises cysteine and glutathione levels.

Vitamin B6: Cofactor for the neurotransmitters serotonin and dopamine; conversion of B6 to its active form is compromised in many autistics. Supplementation trials with B6 resulted in better eye contact, improved speech, and fewer self-stimulatory behavior in autistics. Some consider B6 in combination with magnesium to be a breakthrough treatment for autism.

Magnesium: Cofactor for the neurotransmitters that affect social reactions and emotion; autistics have low levels. Magnesium improves the effectiveness of B6 therapy.

Zinc: Eliminates mercury from brain tissue. The zinc/ copper ratio is particularly low in autistic kids, and low zinc impairs metallothionein, a protein that removes heavy metals from the body.

Carnitine: Transports fatty acids into cells. Low carnitine status, a common feature of autism, impairs the ability to use fatty acids for learning and social development.

For a copy of SpectraCell's Nutrition Correlation chart on autism, click here. 

To evaluate your micronutrient status, order your micronutrient test today!

GET TESTED


 

Topics: Cysteine, zinc, folate, Vitamin D, Carnitine, Magnesium, Vitamin C, Vitamin A, Vitamin B6, Vitamin B12, autism, Glutamine, Glutathione, Vitamin B1, nutrition and autism, nutrition speaks, autistic symptoms, micronutrient deficiencies, autism speaks

The Role of Micronutrient Testing in Conjunction with Standard Lab Tests by Ron Grabowski, DC, RD

Posted by SpectraCell Laboratories, Inc. on Thu, Apr 13, 2017 @ 03:40 PM

Listen to Dr. Grabowski’s take on uncovering nutrient deficiencies to help explain the results of commonly ordered panels. 

 



 

Topics: micronutrients, micronutrient testing, nutrient deficiencies, standard lab testing