SpectraCell Blog

SpectraCell Laboratories, Inc.

Recent Posts

Moms, Roll Up Your Sleeves. Five Nutrients that Combat Cancer and Hormone Imbalance.

Posted by SpectraCell Laboratories, Inc. on Thu, May 10, 2018 @ 11:57 AM

bruce-mars-556415-unsplashCellular health – whether referring to brain cells, bone cells, or fat cells – impacts the health of the entire body. Health issues may arise and manifest differently for each person depending on one’s unique biochemistry. Some common examples of these manifestations include excess weight, headaches, and dry skin, driven by poor cellular metabolism. Quite literally, health and wellness begin at the cellular level. 

A paradigm shift in women’s healthcare is happening right now.  You may have noticed that much of the focus in medicine today has shifted from disease to prevention; however, what we commonly think of as “preventive” medicine (mammograms, PAP smears) is actually pre-symptomatic screening for earlier disease detection and diagnosis.  Prevention can be facilitated by the optimal nourishment of cells with micronutrients (vitamins, minerals, and antioxidants), as these fuel the cell and are involved in hundreds of metabolic reactions and physiological process. Some of these include detoxification, energy production, neurotransmitter balance, sleep quality, cognition, and immunity. Therefore, micronutrients profoundly affect mood, skin, hormone balance – every organ, endocrine, and body system is impacted. In fact, the nutrient-hormone connection is huge.  Did you know that many female cancers – breast, uterine, ovarian – may occur when estrogen is metabolized into toxic by-products that are not eliminated? To keep estrogen metabolism in the body safe, women are encouraged to focus on these micronutrients:

  • Magnesium activates the enzyme that removes toxic forms of estrogen.
  • Vitamin B6 protects genes from estrogen-induced damage.
  • Vitamin B3 increases adiponectin, a weight loss hormone.
  • Vitamin A regulates leptin, a hormone that suppresses appetite.
  • Cysteine prevents toxins in breast tissue from becoming cancerous.

These nutrients and dozens others behave like hormonal housekeepers, and lacking even one of these can set the stage for compromised health: vitamin deficiency can manifest as fairly benign conditions (lack of energy or poor sleep), or more serious illness (allowing the uncontrolled growth of cancerous cells to grow and invade healthy tissue).

Because we are all biochemically unique, micronutrient deficiencies may lead to different symptoms in different women. Find out yours, and take steps to correct them, by taking your micronutrient test today.

GET TESTED

For more information on nutrients impacting estrogen levels, download our nutrient wheel! 

Estrogen Nutrient Wheel

Topics: Micronutrients and Estrogen Imbalance, micronutrient status, Women's Health, Breast Cancer and Nutrition, Ovarian Cancer and Nutrition, estrogen and breast cancer, Chronic Fatigue, Hormone Imbalance

Your Medication’s Side Effects Might Be a Drug-Induced Nutrient Deficiency

Posted by SpectraCell Laboratories, Inc. on Tue, Apr 24, 2018 @ 03:34 PM

rx drugs

Pharmaceutical medications help millions of Americans cope with clinical symptoms every day, but most are not without side effects.  In fact, the side effects of a medication are often worse than the original condition according to many patients.  One reason for this is that prescription drugs very often cause nutrient depletions, which manifest clinically in very significant ways.  A classic example is coenzyme Q10 deficiency caused by statin medications.  Statins block an enzyme that affects cholesterol production, but the same enzyme is needed to manufacture the important antioxidant coenzyme Q10, which is a key nutrient needed for cellular energy metabolism proper heart function.   So if you block this enzyme (called HMG-CoA reductase for hydroxyl-3-methylglutaryl coenzyme A, which is why statins are known generically as HMG-CoA reductase inhbitors), you may lower cholesterol, but as a consequence you may cause a coenzyme Q10 deficiency, which can manifest as low energy and muscle pain. 

Why is this so common?  The reason is simple – the pharmaceutical approach is fundamentally different from the nutrient repletion approach in that medications alter or interrupt metabolic pathways to achieve a clinical result while nutrient repletion supports or helps maintain the optimal function of a metabolic pathway to achieve balance.  In general, medications are palliative in that they focus often on the relief of symptoms.  Conversely, nutrient repletion is curative and the goal is optimal cellular function of which a side effect is relief of symptoms. 

This is not to say that medications have no place in health, but they do have a role in nutrient depletion which can cause the unpleasant and dangerous side effects.  Especially in the age of polypharmacy – when people take more than one medication simultaneously (including over the counter meds) – nutrient depletions caused by drugs deserve a closer look.  Here are some examples of how medications can deplete micronutrients:

  • Meds can interrupt endogenous production of a nutrient (statins and CoQ10)
  • Meds impairs absorption in the gastrointestinal tract (antacids and B12)
  • Meds can create reactive oxygen species and thus “use up” antioxidants (NSAID and cysteine)
  • Meds can increase urinary excretion of nutrients (diuretics and minerals)
  • Meds can alter the gut microbiome (antibiotics and vitamin K)
  • Meds can impairs mitochondrial function and cellular respiration

Adding to the problem is that fact research on drug-induced nutrient depletions is comparatively sparse compared to the giant funding allotted to pharmaceutical development and testing. In addition, there is a lag time between the market introduction of a blockbuster drug and potential nutrient depletion-induced side effect data.  An example of this is research in the past decade that implicates antacids (proton-pump inhibitors) as a causative factor in cardiac events due to their tendency to deplete magnesium.  The strong link between PPI use and arrhythmias (irregular heartbeat) may be caused by magnesium depletion, which may also explain an increased risk in bone fractures for people on long-term PPI use according to the FDA.  Although research on PPI-induced magnesium deficiency emerged in the last few years,  PPIs have been widely used in the market since 1990.  In some cases, the research on drug-induced nutrient depletions may not emerge for many years after a drug is widely accepted into the market.

If you are taking a medication, have your micronutrient levels tested today.

GET TESTED

For more information on drug-induced nutrient depletions associated with statins and antacids, download our nutrient wheels! 

Statins Nutrient Wheel
Antacids Nutrient Wheel

Topics: Drug-induced Nutrient Depletion, statin, Antacids, micronutrient deficiencies, Advanced Nutritional Testing, Intracellular Analysis, Functional Micronutrient Testing, Functional Medicine, Effects of Statins on CoQ10

Bioindividual Nutrition: Breaking Barriers for Autism

Posted by SpectraCell Laboratories, Inc. on Thu, Apr 05, 2018 @ 11:03 AM

Autism-and-Water-child-in-the-waterWhen people think of autism and nutrition, the first thing that often comes to mind is food sensitivities, especially given the widespread attention to the impact of certain additives and common triggers (such as wheat or dairy) on that condition. 

Even more paramount, is the evidence suggesting that Autism is largely a whole-body disorder in which an individual's biochemistry affects the brain, learning and behavior. Restoring balance within the body through food and nutrients, therefore, becomes essential. The good news is, nutritional deficiencies that are impacting your child’s neurological development can be corrected. The list below includes specific micronutrients suggested to have a role in the development and treatment of autism:

Vitamin D: High-dose vitamin D therapy reversed autistic behaviors in severely deficient children; maternal vitamin D deficiency may predispose children to autism. A landmark trial further indicates that vitamin D supplementation helps children with ASD. 

Vitamin A: One cause of autism may be a defect in a retinoid receptor protein (G-alpha protein) that is critical for language processing, attention, and sensory perception. Evidence suggests that natural vitamin A fixes this protein defect in autistics.

Folate: Oral folate therapy can resolve symptoms of autism in some cases, particularly in autistics with genes that impair folate-dependent enzymes.

Glutamine: Blood levels of this amino acid - which acts as a neurotransmitter - are particularly low in autistics. Glutamine also helps prevent leaky gut syndrome, which can exacerbate autistic symptoms.

Vitamin C: Improves symptom severity and sensory motor scores in autistic patients possibly due to interaction with dopamine synthesis; it also has a strong sparing effect on glutathione.

Glutathione & Cysteine: Both are commonly deficient in autistic patients. Low antioxidant status impairs detoxification and methylation processes, and has been linked to neurological symptoms in autism, which is often considered an oxidative stress disorder.

Vitamin B1: Deficiency linked to delayed language development; supplementation may benefit autistic patients.

Vitamin B12: Low B12 impairs methylation (detoxification), which can cause the neurological damage responsible for many autistic symptoms. B12 deficiency can cause optic neuropathy and vision loss in autistics; B12 raises cysteine and glutathione levels.

Vitamin B6: Cofactor for the neurotransmitters serotonin and dopamine; conversion of B6 to its active form is compromised in many autistics. Supplementation trials with B6 resulted in better eye contact, improved speech, and fewer self-stimulatory behavior in autistics. Some consider B6 in combination with magnesium to be a breakthrough treatment for autism.

Magnesium: Cofactor for the neurotransmitters that affect social reactions and emotion; autistics have low levels. Magnesium improves the effectiveness of B6 therapy.

Zinc: Eliminates mercury from brain tissue. The zinc/ copper ratio is particularly low in autistic kids, and low zinc impairs metallothionein, a protein that removes heavy metals from the body.

Carnitine: Transports fatty acids into cells. Low carnitine status, a common feature of autism, impairs the ability to use fatty acids for learning and social development.

The longer a child goes with Autism, the harder they are to reach. Evaluate your child's micronutrient status today!

GET TESTED

For a copy of SpectraCell's Nutrition Correlation chart on autism, click here. 


 

Topics: autism, micronutrient deficiencies, nutrition and autism, autism speaks, nutrition speaks, autistic symptoms, Vitamin D, Vitamin A, folate, Glutamine, Vitamin C, Glutathione, Cysteine, Vitamin B1, Vitamin B6, Vitamin B12, Magnesium, zinc, Carnitine, integrative approach to autism, alternative therapy for autism

Micronutrients: The Key to Effective Weight Loss 

Posted by SpectraCell Laboratories, Inc. on Fri, Mar 09, 2018 @ 01:26 PM

healthfit.jpgWe’ve all heard the proverbial advice for achieving a healthy body and maintaining our weight: exercise and “eat right.”  But for those who really want to delve further into the science behind an enviable metabolism, we offer a list of vitamins with an explanation of their role in the body’s ability to burn fat and build muscle.

  1. Vitamin A: This vitamin is particularly good at regulating how genes are expressed. Although genes do determine to an extent how the body stores or burns fat, our genes are, simply stated, not our destiny. Two persons with the same gene may express it very differently, depending on their individual cellular environment. This is where vitamin A enters the picture. It can actually enhance the expression of certain genes that lower a person’s tendency to store food as fat. If one is vitamin A deficient, s/he may be pre-disposed to storing fat tissue. On the other hand, correcting a vitamin A deficiency may have a different, more positive effect, as studies have indicated that vitamin A may reduce the size of fat cells.
  1. Vitamin D: Similar to vitamin A, vitamin D (commonly referred to as the “sunshine vitamin”) affects genetic expression, including the way that fat cells develop. A vitamin D deficiency is strongly linked to poor carbohydrate metabolism: instead of efficiently burning carbohydrate for fuel (which consequently helps impart energy and mental focus), the body instead stores carbohydrate as fat. Correcting a vitamin D deficiency can boost metabolism by reversing this deleterious effect.  
  1. Vitamin E: This micronutrient affects metabolism by inhibiting immature fat cells from developing into mature fat cells, which are more “stubborn,” metabolically speaking. The cumulative effect of this is a reduction in fat storage.
  1. Vitamin B3Also called niacin, vitamin B3 can increase the hormone adiponectin, which is secreted by fat cells. Adiponectin’s main function is to signal cells to burn fuel. It also has a role in helping muscles use glucose for energy rather than storing it as fat.
  1. Vitamin B5: Some evidence suggests that vitamin B5 (AKA pantothenate or pantothenic acid) might be helpful for weight loss because it has been associated with less hunger when dieting. At the cellular level, vitamin B5 activates the enzyme lipoprotein lipase, which breaks down fat cells.

This list is by no means exhaustive: in fact, there are multiple micronutrient influences on weight loss. These micronutrients work both individually and synergistically, and repletion often promotes clinical benefits throughout the body. It should come as no surprise that micronutrient adequacy also supports heart health and energy levels. Therefore, discovering (then correcting) micronutrient deficiencies becomes a critical first step in improving overall health. 

Download our quick reference nutrient wheel for weight management. 
DOWNLOAD

Tired of not getting the results you want? Interested in learning how you can improve the efficacy of your weight management routine? Get tested and find out how your micronutrient status stacks up!

GET TESTED

Topics: Effective weight loss, Effective weight management, Vitamins and weight loss, Vitamin A, Vitamin D, Vitamin E, Vitamin B3, Vitamin B5, Role of micronutrients in weight management, micronutrients, micronutrients and weight loss, integrative approach to weight loss

An Unhealthy Diet Programs Immune Cells to be "Hyperactive"

Posted by SpectraCell Laboratories, Inc. on Tue, Mar 06, 2018 @ 12:31 PM

diet.jpgEpigenetics – the study of changes in organisms caused by modification of gene expression rather than alteration in the genetic code itself– has gained much attention in recent years.  Environmental factors including diet, smoking and stress have been shown to impact gene expression through epigenetic mechanisms.

In a recent experiment involving the collaboration of several medical institutions, an experiment was performed on mice to determine how their immunity responded to a typical Western diet.  When mice were fed a Western diet, systemic inflammation occurred which was entirely expected. However, what was particularly interesting was that the Western (inflammatory) diet fundamentally changed their immune system.  After eating high calorie, low nutrient food, not only did the mice exhibit more systemic inflammation (not surprising), but their white blood cells became programmed to remain hyper-sensitive to inflammatory triggers.  The cellular “memory” had changed.


Here is how it worked: a gene called NLRP3 (for Nucleotide binding domain Like Receptor Protein) makes a protein that is used by our immune cells to recognize harmful bacteria and viruses.  This protein made by the NLRP3 gene recognizes “bad” cell remnants.  These can be parts of bacterial cell membranes, or pieces of genetic material found in viruses, or even parts of a cell that are supposed to be contained but may leak out due to cellular trauma.  It is a fundamental way our immune cells recognize something is wrong – bacteria are present or acute tissue damage occurred, for example – and thus launch an inflammatory response to deal with the biological crisis and take care of it.

In this study, the immune cells in mice fed a typical Western diet of high-calorie, low nutrient foods launched the same inflammatory response as if an invading bacterial infection were present. Furthermore, the immune cells became hypersensitive so that they continued their inflammatory attack, even when the mice’s diet was returned to normal. In other words, the immune cells responded to a Western diet in the same way it responds to infections.  But instead of the infection clearing up, the Western diet seemed to reprogram the immune cells to stay in a perpetual hyperactive state. These results may help explain why chronic inflammation is behind so many lifestyle-related diseases such as heart disease, obesity and diabetes.

LINK to ABSTRACT Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming.

Topics: Nutrition, Healthy Diet, Epigenetics, Diet and Immune Response, Nutritional Testing, micronutrient status, micronutrient testing, Advanced Nutritional Testing

Clearing Up the Cholesterol Confusion

Posted by SpectraCell Laboratories, Inc. on Thu, Feb 01, 2018 @ 01:52 PM

heart apple.jpgConsider this startling statistic: 50% of people who have heart attacks have "normal" cholesterol.  Stated differently, half of all heart attack victims could have a routine cholesterol test done on the very day they have a heart attack and their cholesterol (by routine testing standards) would be "normal" range. So, why do so many practitioners use a diagnostic test that is only 50% accurate?  The reason is simple:  it’s the test with which they are familiar and have been using for decades.  Knowing your HDL and LDL - the "good" and "bad" cholesterol is only the beginning.  SpectraCell’s LPP (Lipoprotein Particle Profile) test goes much, much further.
 
Here is the basic scenario of heart disease:  When our blood vessels are "scratched," or injured, plaque builds up in our arteries to repair the injury, sort of like a scab on the inside of  the blood vessel, causing reduced blood flow. Since plaque buildup is our bodies' response to injury of the blood vessels, reducing the injury to our arteries is key.  
 
That's where cholesterol comes in. Cholesterol is actually a response to vascular injury - not the cause of it. Cholesterol is really not the culprit. Lipoproteins are. Lipoproteins are what "scratch" or "burrow" into our arteries causing injury.  They are actually tiny balls in our blood that carry the cholesterol, our vascular scapegoat. Lipoproteins are what do the damage, not the cholesterol inside them. Cholesterol is really just along for the ride. Lipoproteins, at least the dangerous ones, are the real villain.
 
There are different sizes of lipoproteins. In general, bigger is better.  Here's why: Larger, fluffier LDL particles cannot lodge into your arteries (which is an injury to the artery) as easily as the smaller LDL particles can. Less injury to the artery means less plaque formation and clearer, more pliable blood vessels - a good thing. So it is imperative to understand what kind of LDL (low density lipoproteins) you have floating around in your blood. There are some that are extraordinarily dangerous and some that are completely benign.
 
For example, RLP (also called remnant lipoprotein) has been cited by the government as a very high risk factor for heart disease. But statins, which lower LDL, will do nothing to help your RLP, which are best lowered by high dose omega 3 fatty acids. So, if you don't know what kind of lipoproteins you have, you're shooting in the dark in terms of what treatments you should take. You can see why measuring just plain old cholesterol is certainly not enough. That is why 50% of the people who have fatal heart attacks have "normal" cholesterol - they are not getting the right cholesterol/ lipoprotein test done.
 
Here's the best part:  SpectraCell's LPP® test costs about the same as an outdated cholesterol test and it is also often covered by insurance. Why wouldn't you want an LPP® done?

Topics: Heart Attack, Heart Disease, Heart Health, Cholesterol, Standard Cholesterol Testing, Lipoprotein Particles, HDL, LDL and HDL, Lower LDL, Plaque Formation

Is the Lack of Carnitine a Root Cause of Autism?

Posted by SpectraCell Laboratories, Inc. on Tue, Dec 05, 2017 @ 11:00 AM

autism.jpegAlthough autism likely has more than a singular cause, it is possible that one nutrient deficiency or imbalance can have a significant impact on its development. Recent evidence suggests that carnitine – a relatively under-recognized nutrient among the general public – plays a bigger role in autism than previously thought.

Carnitine’s main function is to transport fatty acids into the cellular powerhouse (mitochondria) for energy. Low carnitine status (common in autism) can impair the ability to use fatty acids for learning and social development.  This recent research hypothesizes that carnitine deficiency may cause symptoms of autism and goes on to suggest that up to 20% of autism cases may be preventable via appropriate supplementation. The author points out that a defect in carnitine biosynthesis is a risk factor for autism, citing the gene (SLC6A14) that limits carnitine utilization in the brain. Expressed only in males, this suggests the reason that autism is more prevalent in boys than in girls. 

For additional information about the micronutrient impact on this this condition, download the Nutrients and Autism flyer here.

For more details on the cited paper, click here for a link to the abstract, “Brain carnitine deficiency causes nonsyndromic autism with an extreme male bias: a hypothesis,” published in the July 2017 issue of Bioassays

Topics: Carnitine Deficiency and Autism, Nutrient Deficiency, Low Carnitine Status, micronutrient status, micronutrients, nutrition and autism

Vitamin B1 and Female Fertility

Posted by SpectraCell Laboratories, Inc. on Wed, Nov 29, 2017 @ 11:00 AM

pregnant.jpegA vitamin B1 deficiency has been shown to compromise egg cell health in female mice. Even though this study was carried out on mice, the implications for human health and fertility are not lost. Scientists were interested in assessing the effect of mild and severe vitamin B1 (thiamin) deficiency on egg cells and what they found was revealing. 

Mice were fed one of two diets: normal or one lacking in vitamin B1. Not surprisingly, the vitamin B1 concentration in the ovaries of mice not given vitamin B1 was much lower than that of mice fed B1. Since the major source of cellular energy in oocytes (immature egg cells) comes from a compound (pyruvic acid) that is metabolized by a vitamin B1-dependent enzyme, researchers wanted to investigate the impact of B1 deficiency on egg cell development. 

If the vitamin B1 deficiency was “mild” (not severe enough to cause weight loss), the mice ovaries produced egg cells that were normal. However, if B1 deficiency reached severe levels, then their ovaries would produce abnormal egg cells more often: 44% of eggs from severely deficient animals were abnormal, compared to only 14% of eggs from mice with adequate B1. Furthermore, once the mice returned to a vitamin B1-containing diet, the level of abnormal egg cells dropped from 44% to 23%, suggesting that egg cell damage may occur as the cell matures but not in its immature stage. 

For more details on the cited paper, click here for a link to the abstract, “Effects of Mild and Severe Vitamin B1 Deficiencies on the Meiotic Maturation of Mice Oocytes,” published in the March 2017 issue of Nutrition and Metabolic Insights.  For a copy of the full paper, click here

Topics: Vitamin B1, Vitamin B1 and Fertility, Female Fertility, micronutrients, Vitamin B1 Deficiency

Vitamin K May Boost Performance in Athletes

Posted by SpectraCell Laboratories, Inc. on Tue, Nov 21, 2017 @ 11:00 AM

cyclist-1.jpegVitamin K is often regarded as a nutrient for improving heart health, lowering cancer risk, and increasing bone density, but it also appears to improve fitness even in healthy athletes. Like most nutrients, it seems to have quite versatile roles.

In this small study, 26 trained male and female athletes were administered placebo or vitamin K2 supplements for eight weeks while they maintained their regular exercise routines. At the beginning of the study and after eight weeks, each person completed a fitness test on an exercise machine designed to quantify their physical work load, oxygen consumption, respiratory rate, cardiac output, and heart rate.  

Vitamin K2 supplementation was associated with a 12% increase in cardiac output (volume of blood that the heart is capable of pumping per beat). The authors suggest that vitamin K2, which has previously been shown to play a role in energy metabolism (especially in tissues with high energy requirements such as skeletal muscle and heart) might be considered in healthy athletes to improve performance. 

For more details on the cited paper, click here for a link to the abstract, “Oral Consumption of Vitamin K2 for 8 Weeks Associated With Increased Maximal Cardiac Output During Exercise,” published in the July 2017 issue of Alternative Therapies in Health and Medicine. 

Topics: Vitamin K, Vitamin K and Sports Performance, Vitamin K and Heart Health, Nutrition, Nutrition and Sports Performance, micronutrients

Can We Change Our Genetic Expression with Nutrients?

Posted by SpectraCell Laboratories, Inc. on Fri, Nov 17, 2017 @ 11:30 AM

DNA Human.jpgRecent evidence suggests that the answer is yes.  Most people understand that we all have inherent genetic predispositions – some as benign as the shape of our nose and others more dangerous such as the tendency toward certain cancers.  However, as research on epigenetics grows, the ability to modulate the expression of certain genes is becoming clearer.  Epigenetics is the study of how our genetic expression is affected by factors other than changes in DNA sequence.  These factors include our environment, including what we eat, supplements we take, toxins, illnesses, even the amount of sunlight to which we are exposed. 

In this study, variations (known by geneticists as polymorphisms) in a specific gene that makes a protein called the zinc transporter 8 (ZNT8), which carries zinc into the hormone insulin, were studied. This protein ZNT8 is responsible for ensuring that pancreatic beta cells (the cells that make insulin which allows us to metabolize blood sugar) have adequate zinc available.  If cells in the pancreas do not have enough zinc, they will not function optimally which may ultimately result in higher risk of insulin resistance and the metabolic dysfunction that follows.  

When participants with the (CC) genotype ingested more zinc and omega 3 fatty acids, they lowered their risk of metabolic syndrome consequences associated with their genotype. Stated differently, people with this specific genotype (CC) responded well (in terms of improved insulin sensitivity and metabolic health) to higher levels of zinc and omega 3 fatty acids, while other genotypes (CT or TT) did not show a meaningful improvement in metabolism.  Since over-supplementation has potentially negative consequences (too much zinc can cause copper deficiency, for example), knowing your genotype may lead to more informed supplementation decisions. 

For more details, click here for a link to the abstract entitled Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome published in the May 2017 issue of Scientific Reports  (Abstract 2640).  Or read the full paper here.  (Full paper 829)

 

Adapted from July 2017 Clinical Updates.  9/27/2017.  (NLH)

Topics: Epigenetics, Gene Expression, Gene Expression and Nutrition, micronutrients, Genetic Predisposition