SpectraCell Blog

Case Study: High Dose of Vitamin B1 Clears Up 26 Years of Painful Headaches

Posted by SpectraCell Laboratories, Inc. on Thu, Jul 12, 2018 @ 12:32 PM

headacheIn this case report, a 41-year-old man who had been suffering from cluster headache since the age of 15 years old was treated with high dose vitamin B1 (thiamine).  He had been diagnosed with cluster headache at a neurological center in Italy. His first headache occurred at age 15 shortly after a motorcycle accident and they increased in frequency over the years, with acute pain and intensity that significantly compromised his quality of life.  Although the patient would experience some headache free months over the years, in January 2016 the headache clusters began occurring daily with no pain-free period for an entire year.  The patient had been treated with sumatriptan, a commonly prescribed drug for cluster headache, which did not work.  He had also been prescribed prednisone, although this not alleviate the pain either.  In December 2016, he was given oral high dose vitamin B1.  Initially, the dose was 250mg, then it was increased to 750 mg after a few days.  Within 10 days, the headache pain disappeared.  He continued the vitamin B1 daily indefinitely.

Interestingly, the neurological center requested that he stop the vitamin B1 in order to test whether the headaches would come back.  He refused this request citing his reluctance to re-experience his headache pain.  However, in May 2017 (five months after B1 treatment started), the patient forgot his vitamin B1 while on a vacation.  Within 48 hours of the last dose, a painful headache occurred.   He resumed vitamin B1 therapy after his vacation and was able to reduce the dose to 500mg with no recurrence of headaches to date.

Cluster headache is a painful condition in which very severe headaches occur with little warning and in “clusters” meaning several headaches will occur in a short time period.  Patients of cluster headache have very little or no warning when they occur unlike migraine which may gradually build in intensity.  Classified as a neurological condition, cluster headache is characterized by very severe and intense pain around the eye, often on only one side of the head.  Some researchers suggest that the role vitamin B1 plays in energy metabolism, brain function and pain modulation make it a potential therapy for this rare neurological disorder.  

(Case Reports in Neurological Medicine, April 2018)

LINK to ABSTRACT Oral High-Dose Thiamine Improves the Symptoms of Chronic Cluster Headache.

LINK to FREE FULL TEXT

Topics: micronutrients, Vitamin B1, micronutrient deficiency, Vitamin B1 Deficiency, Headaches and Nutrition, Vitamin B1 and Headaches

Study Sheds Light on the Link Between Biotin Deficiency and Inflammation

Posted by SpectraCell Laboratories, Inc. on Fri, Jun 29, 2018 @ 02:59 PM

cauliflower copyPrevious research has shown that biotin deficiency increases inflammation but since there are so many causes of inflammation – physiologically speaking – the actual metabolic pathways between biotin deficiency and inflammation are unclear.  In this study, researchers subjected human immune cells to biotin deficiency and compared the result to human immune cells living in a biotin-rich environment.  Biotin, also known as vitamin B7, is a key vitamin necessary for proper cellular metabolism. It is a cofactor to cellular energy production and therefore important to cellular health at a fundamental level. 

When the human immune cells were biotin deficient, expression of inflammatory proteins increased.  Specifically, CD4+T cells were used, which are also known as T-helper cells because they are a type of white blood cell that directs the function of other immune cells.  In other words, T-helper cells supervise immune cells, sending signals to attack viruses and bacteria, for example. In biotin deficiency, the number of these regulatory immune cells (CD4+T) decreased.  At the same time, biotin deficiency caused an increase in the metabolic pathway (called mTOR) that regulates cell growth.  mTOR (mammalian target of rapamycin) is a protein that senses the nutrient and energy status of cells and regulates their metabolism accordingly.  A decrease in mTOR is generally good and can lead to a longer lifespan.  An increase in mTOR is generally bad and can lead to tumors or cancerous growths. 

The results of this study – both in vivo and in vitro – showed that biotin deficiency increased the mTOR pathway, which then resulted in an increase in several inflammatory compounds.  This, combined with the fact that biotin deficiency decreased the number of T-helper cells, meaning fewer immune cells were around to regulate everything, ultimately induced the increase in inflammation seen in biotin deficiency.

(Journal of Immunology, April 2018

LINK to ABSTRACT Biotin Deficiency Induces Th1- and Th17-Mediated Proinflammatory Responses in Human CD4+ T Lymphocytes via Activation of the mTOR Signaling Pathway.

LINK to FREE FULL TEXT

Topics: micronutrients, micronutrient testing, biotin, B Complex Vitamins, Vitamin B7, Biotin Deficiency

Micronutrients: The Key to Effective Weight Loss 

Posted by SpectraCell Laboratories, Inc. on Fri, Mar 09, 2018 @ 01:26 PM

healthfit.jpgWe’ve all heard the proverbial advice for achieving a healthy body and maintaining our weight: exercise and “eat right.”  But for those who really want to delve further into the science behind an enviable metabolism, we offer a list of vitamins with an explanation of their role in the body’s ability to burn fat and build muscle.

  1. Vitamin A: This vitamin is particularly good at regulating how genes are expressed. Although genes do determine to an extent how the body stores or burns fat, our genes are, simply stated, not our destiny. Two persons with the same gene may express it very differently, depending on their individual cellular environment. This is where vitamin A enters the picture. It can actually enhance the expression of certain genes that lower a person’s tendency to store food as fat. If one is vitamin A deficient, s/he may be pre-disposed to storing fat tissue. On the other hand, correcting a vitamin A deficiency may have a different, more positive effect, as studies have indicated that vitamin A may reduce the size of fat cells.
  1. Vitamin D: Similar to vitamin A, vitamin D (commonly referred to as the “sunshine vitamin”) affects genetic expression, including the way that fat cells develop. A vitamin D deficiency is strongly linked to poor carbohydrate metabolism: instead of efficiently burning carbohydrate for fuel (which consequently helps impart energy and mental focus), the body instead stores carbohydrate as fat. Correcting a vitamin D deficiency can boost metabolism by reversing this deleterious effect.  
  1. Vitamin E: This micronutrient affects metabolism by inhibiting immature fat cells from developing into mature fat cells, which are more “stubborn,” metabolically speaking. The cumulative effect of this is a reduction in fat storage.
  1. Vitamin B3Also called niacin, vitamin B3 can increase the hormone adiponectin, which is secreted by fat cells. Adiponectin’s main function is to signal cells to burn fuel. It also has a role in helping muscles use glucose for energy rather than storing it as fat.
  1. Vitamin B5: Some evidence suggests that vitamin B5 (AKA pantothenate or pantothenic acid) might be helpful for weight loss because it has been associated with less hunger when dieting. At the cellular level, vitamin B5 activates the enzyme lipoprotein lipase, which breaks down fat cells.

This list is by no means exhaustive: in fact, there are multiple micronutrient influences on weight loss. These micronutrients work both individually and synergistically, and repletion often promotes clinical benefits throughout the body. It should come as no surprise that micronutrient adequacy also supports heart health and energy levels. Therefore, discovering (then correcting) micronutrient deficiencies becomes a critical first step in improving overall health. 

Download our quick reference nutrient wheel for weight management. 
DOWNLOAD

Tired of not getting the results you want? Interested in learning how you can improve the efficacy of your weight management routine? Get tested and find out how your micronutrient status stacks up!

GET TESTED

Topics: micronutrients, Vitamin D, Vitamin E, Vitamin A, Vitamin B5, Vitamin B3, Vitamins and weight loss, Role of micronutrients in weight management, Effective weight loss, Effective weight management, integrative approach to weight loss, micronutrients and weight loss

Is the Lack of Carnitine a Root Cause of Autism?

Posted by SpectraCell Laboratories, Inc. on Tue, Dec 05, 2017 @ 11:00 AM

autism.jpegAlthough autism likely has more than a singular cause, it is possible that one nutrient deficiency or imbalance can have a significant impact on its development. Recent evidence suggests that carnitine – a relatively under-recognized nutrient among the general public – plays a bigger role in autism than previously thought.

Carnitine’s main function is to transport fatty acids into the cellular powerhouse (mitochondria) for energy. Low carnitine status (common in autism) can impair the ability to use fatty acids for learning and social development.  This recent research hypothesizes that carnitine deficiency may cause symptoms of autism and goes on to suggest that up to 20% of autism cases may be preventable via appropriate supplementation. The author points out that a defect in carnitine biosynthesis is a risk factor for autism, citing the gene (SLC6A14) that limits carnitine utilization in the brain. Expressed only in males, this suggests the reason that autism is more prevalent in boys than in girls. 

For additional information about the micronutrient impact on this this condition, download the Nutrients and Autism flyer here.

For more details on the cited paper, click here for a link to the abstract, “Brain carnitine deficiency causes nonsyndromic autism with an extreme male bias: a hypothesis,” published in the July 2017 issue of Bioassays

Topics: micronutrients, nutrition and autism, micronutrient status, Carnitine Deficiency and Autism, Nutrient Deficiency, Low Carnitine Status

Vitamin B1 and Female Fertility

Posted by SpectraCell Laboratories, Inc. on Wed, Nov 29, 2017 @ 11:00 AM

pregnant.jpegA vitamin B1 deficiency has been shown to compromise egg cell health in female mice. Even though this study was carried out on mice, the implications for human health and fertility are not lost. Scientists were interested in assessing the effect of mild and severe vitamin B1 (thiamin) deficiency on egg cells and what they found was revealing. 

Mice were fed one of two diets: normal or one lacking in vitamin B1. Not surprisingly, the vitamin B1 concentration in the ovaries of mice not given vitamin B1 was much lower than that of mice fed B1. Since the major source of cellular energy in oocytes (immature egg cells) comes from a compound (pyruvic acid) that is metabolized by a vitamin B1-dependent enzyme, researchers wanted to investigate the impact of B1 deficiency on egg cell development. 

If the vitamin B1 deficiency was “mild” (not severe enough to cause weight loss), the mice ovaries produced egg cells that were normal. However, if B1 deficiency reached severe levels, then their ovaries would produce abnormal egg cells more often: 44% of eggs from severely deficient animals were abnormal, compared to only 14% of eggs from mice with adequate B1. Furthermore, once the mice returned to a vitamin B1-containing diet, the level of abnormal egg cells dropped from 44% to 23%, suggesting that egg cell damage may occur as the cell matures but not in its immature stage. 

For more details on the cited paper, click here for a link to the abstract, “Effects of Mild and Severe Vitamin B1 Deficiencies on the Meiotic Maturation of Mice Oocytes,” published in the March 2017 issue of Nutrition and Metabolic Insights.  For a copy of the full paper, click here

Topics: micronutrients, Vitamin B1, Vitamin B1 and Fertility, Female Fertility, Vitamin B1 Deficiency

Vitamin K May Boost Performance in Athletes

Posted by SpectraCell Laboratories, Inc. on Tue, Nov 21, 2017 @ 11:00 AM

cyclist-1.jpegVitamin K is often regarded as a nutrient for improving heart health, lowering cancer risk, and increasing bone density, but it also appears to improve fitness even in healthy athletes. Like most nutrients, it seems to have quite versatile roles.

In this small study, 26 trained male and female athletes were administered placebo or vitamin K2 supplements for eight weeks while they maintained their regular exercise routines. At the beginning of the study and after eight weeks, each person completed a fitness test on an exercise machine designed to quantify their physical work load, oxygen consumption, respiratory rate, cardiac output, and heart rate.  

Vitamin K2 supplementation was associated with a 12% increase in cardiac output (volume of blood that the heart is capable of pumping per beat). The authors suggest that vitamin K2, which has previously been shown to play a role in energy metabolism (especially in tissues with high energy requirements such as skeletal muscle and heart) might be considered in healthy athletes to improve performance. 

For more details on the cited paper, click here for a link to the abstract, “Oral Consumption of Vitamin K2 for 8 Weeks Associated With Increased Maximal Cardiac Output During Exercise,” published in the July 2017 issue of Alternative Therapies in Health and Medicine. 

Topics: micronutrients, Vitamin K, Nutrition, Nutrition and Sports Performance, Vitamin K and Sports Performance, Vitamin K and Heart Health

Can We Change Our Genetic Expression with Nutrients?

Posted by SpectraCell Laboratories, Inc. on Fri, Nov 17, 2017 @ 11:30 AM

DNA Human.jpgRecent evidence suggests that the answer is yes.  Most people understand that we all have inherent genetic predispositions – some as benign as the shape of our nose and others more dangerous such as the tendency toward certain cancers.  However, as research on epigenetics grows, the ability to modulate the expression of certain genes is becoming clearer.  Epigenetics is the study of how our genetic expression is affected by factors other than changes in DNA sequence.  These factors include our environment, including what we eat, supplements we take, toxins, illnesses, even the amount of sunlight to which we are exposed. 

In this study, variations (known by geneticists as polymorphisms) in a specific gene that makes a protein called the zinc transporter 8 (ZNT8), which carries zinc into the hormone insulin, were studied. This protein ZNT8 is responsible for ensuring that pancreatic beta cells (the cells that make insulin which allows us to metabolize blood sugar) have adequate zinc available.  If cells in the pancreas do not have enough zinc, they will not function optimally which may ultimately result in higher risk of insulin resistance and the metabolic dysfunction that follows.  

When participants with the (CC) genotype ingested more zinc and omega 3 fatty acids, they lowered their risk of metabolic syndrome consequences associated with their genotype. Stated differently, people with this specific genotype (CC) responded well (in terms of improved insulin sensitivity and metabolic health) to higher levels of zinc and omega 3 fatty acids, while other genotypes (CT or TT) did not show a meaningful improvement in metabolism.  Since over-supplementation has potentially negative consequences (too much zinc can cause copper deficiency, for example), knowing your genotype may lead to more informed supplementation decisions. 

For more details, click here for a link to the abstract entitled Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome published in the May 2017 issue of Scientific Reports  (Abstract 2640).  Or read the full paper here.  (Full paper 829)

 

Adapted from July 2017 Clinical Updates.  9/27/2017.  (NLH)

Topics: micronutrients, Epigenetics, Gene Expression, Gene Expression and Nutrition, Genetic Predisposition

Vitamin A: Functions and Benefits

Posted by SpectraCell Laboratories, Inc. on Mon, Jul 31, 2017 @ 11:30 AM

vit A.jpgVitamin A was one of the earliest vitamins to be discovered – hence its top rank in the alphabetical vitamin nomenclature.Vitamin A is a family of fat soluble compounds that play an important role in vision, bone growth, reproduction, and immune system regulation. Most people associate vitamin A with carrots, and for good reason: the common orange veggie has high amounts of beta-carotene, which is actually a vitamin A precursor and also the reason carrots got their name. But vitamin A is actually a group of chemicals that are similar in structure, and include retinol (the most biologically active form of vitamin A), retinal, and retinoic acid.

β-carotene is slightly different in that it is cleaved in the intestinal mucosa by an enzyme to form retinol. Other carotenoids include lycopene and lutein but, although similar to vitamin A, they are not actually vitamin A in the truest sense. One distinction is that excessive amounts of vitamin A from over-supplementation, can cause toxicity (although deficiency is much more common). On the other hand, β-carotene does not cause vitamin A toxicity because there exists a regulatory mechanism that limits vitamin A production from beta carotene when high levels are ingested.

A large number of physiological systems may be affected by vitamin A deficiency which is most often associated with strict dietary restrictions and excess alcohol intake. Patients with Celiac disease, Crohn’s disease and pancreatic disorders are particularly susceptible due to malabsorption.  Vitamin A is also essential for the developing skeletal system and deficiency can result in growth retardation or abnormal bone formation. 

The functions of vitamin A are very diverse:

  • Eyesight: Vitamin A forms retinal, which combines with a protein (rhodopsin) to create the light-absorbing cells in the eye. This explains why a common clinical manifestation of deficiency is night blindness and poor vision.
  • Skin: In addition to promoting healthy skin function and integrity, vitamin A regulates the growth of epithelial surfaces in the eyes and respiratory, intestinal, and urinary tracts. Deficiency impairs epithelial regeneration, which can manifest as skin hyperkeratization, infertility, or increased susceptibility to respiratory infections.
  • Anemia: Vitamin A helps transfer iron to red blood cells for incorporation into hemoglobin; thus, a vitamin A deficiency will exacerbate an iron deficiency.
  • Weight management: Vitamin A reduces the size of fat cells, regulates the genetic expression of leptin (a hormone that suppresses appetite), and enhances the expression of genes that reduce a person’s tendency to store food as fat.
  • Cancer prevention: Vitamin A deficiency impairs the body’s ability to launch cell-mediated immune responses to cancer cells. Vitamin A inhibits squamous metaplasia (a type of skin cancer) and inhibits breast cancer cell growth.
  • Fertility: Vitamin A plays a key role in the synthesis of sperm.
  • Autism: Vitamin A is part of the retinoid receptor protein (G-alpha protein), which is critical for language processing, attention, and sensory perception. Some autistics have a defect in this protein that vitamin A supplementation can modulate.
  • Sleep: Vitamin A deficiency alters brains waves in non-REM sleep, causing sleep to be less restorative.

Vitamin A also interacts with other micronutrients. For example, zinc is required to transport vitamin A into tissues, so a zinc deficiency will limit retinal binding protein (RBP) synthesis and thus limits the body’s ability to use vitamin A stores in the liver. Oleic acid, a fatty acid found in olive oil, facilitates the absorption of vitamin A in the gut.

Find out if you have a vitamin A deficiency, and take steps to correct it, by ordering a micronutrient test today. 

GET TESTED

Topics: micronutrients, Vitamin A, Vitamins, Fertility, Cancer Prevention, Celiac Disease, Supernutrients, Weight Management, Vitamin A Deficiency, Chron's Disease, Anemia, Nutrients, β-carotene

Vital to Victory: Micronutrient Requirements for Athletes

Posted by SpectraCell Laboratories, Inc. on Wed, Jun 21, 2017 @ 01:25 PM

From a nutritional standpoint, the athlete’s focus should include both macronutrients – protein for muscle rebuilding, carbohydrates for energy renewal, fats for nerve function – as well as the critically important micronutrients – which are the vitamins, minerals, antioxidants and amino acids your body needs to function optimally every day and over a lifetime.

Hear Dr. Grabowski’s take on the role of micronutrients in sports nutrition.

Above all, we are all biochemically unique, and several factors affect our personal micronutrient needs - age, lifestyle, intensity of physical training, prescription drug usage, past and present illness or injuries, absorption rate, genetics and more. The “normal” amount of each micronutrient varies from athlete to athlete, and even in the same athlete depending on circumstances in his or her life.

SpectraCell’s Micronutrient test measures 33 vitamins and minerals in your body, but goes even further – it measures functional, long-term levels within the cell, which means SpectraCell’s micronutrient test not only identifies deficiencies but is also a valuable tool in predicting health concerns before overt symptoms occur. How's that for a test?! 
 
That said, YOU ARE WHAT YOU ABSORB - not just what you eat. Find out whether your supplements are really working and how you can improve your absorption and performance today. To learn more about the role of micronutrients in sports nutrition, click here
GET TESTED


 

Topics: micronutrients, Muscle recovery, Sports Performance, Nutrition and Sports Performance, Endurance Athletes, Crossfit, Athletic Performance, Sports Nutrition, XFIT, Sports Medicine

The Role of Micronutrient Deficiencies in Attention Deficit Hyperactivity Disorder

Posted by SpectraCell Laboratories, Inc. on Fri, May 05, 2017 @ 11:27 AM

ADHD.jpgAttention Deficit Hyperactivity Disorder (ADHD) has become an increasingly prevalent condition, afflicting children, adolescents, and adults. Some hallmarks of this brain disorder include an inability to focus and/ or a failure to see projects/ activities to completion. Unbeknownst to most, ADHD can be exacerbated by micronutrient deficiencies. Evidence of the relationship between micronutrient status and ADHD-associated behaviors is compelling; the list below represents some examples of the micronutrient status-ADHD connection: 

Vitamin B6: Evidence suggests that high-dose supplementation of B6 is as effective as Ritalin for ADHD, probably due to its role in raising serotonin levels.

Folate (AKA Vitamin B9): Low maternal folate status during pregnancy has been linked to hyperactivity in children. Persons with the MTHFR (methyl tetrahydrafolate reductase) polymorphism are predisposed to folate deficiency, and are more likely to have ADHD.

Magnesium: A deficiency in this micronutrient is linked to poor functioning of the neurotransmitters that control emotion, social reactions, hyperactivity, and attention. Magnesium has a synergistic effect with vitamin B6.

Zinc: This nutrient is a cofactor required for the synthesis of dopamine, which impacts mood and concentration. Low zinc depresses both melatonin and serotonin production; this affects behavior and one’s ability to process information.

Carnitine: Reduces hyperactivity and improves social behavior in people with ADHD via its role in fatty acid metabolism. Some consider carnitine a safe alternative to stimulant drugs.

Serine: Administration of phosphatidylserine in conjunction with omega-3 fatty acids improved ADHD symptoms (attention scores) significantly more than omega-3 fatty acids alone, suggesting a synergistic effect. Phosphatidylserine increases dopamine levels.

Glutamine: A precursor to GABA (gamma-aminobutyric acid), the calming neurotransmitter that affects mood, focus, and hyperactivity. Disruption of glutamine-containing neurotransmission systems may cause ADHD. 

Choline: A precursor to acetylcholine, the neurotransmitter that regulates memory, focus, and muscle control (hyperactivity). 

Antioxidant status: Oxidative imbalance is prevalent in ADHD patients and likely plays a causative role. Glutathione, a very potent antioxidant, is commonly deficient in ADHD.

To evaluate your micronutrient status, order your micronutrient test today!

For a copy of SpectraCell's nutrient correlation wheel on ADHD, click here.

 

Topics: micronutrients, Nutrition, ADHD, micronutrient deficiencies in ADHD, mental health in children, micronutrient status